Skip to main content

Fanxin Long, PhD

Fanxin Long, PhD

Fanxin Long, PhD

Fanxin Long, PhD is a principal investigator in the Cell and Gene Therapy Collaborative at Children's Hospital of Philadelphia.

About Fanxin Long, PhD

Since the early days of his scientific training, Dr. Long has been interested in understanding how the mammalian skeleton is formed and maintained in a functional state throughout life. Many of his studies have revolved around key developmental pathways such as Hedgehog, Wnt and Notch signaling in bone development and homeostasis. Through mouse genetic studies, his group has defined specific functions of the developmental signals in bone cell differentiation. Their biochemical studies have led to the discovery that developmental signals reprogram cellular metabolism to change cell fate. The lab currently tests the hypothesis that dysregulation of glucose metabolism is a root cause for skeletal disorders associated with diabetes and aging.

Titles

Investigator

Awards and Honors

Washington University School of Medicine Distinguished Investigator Award, 2009

Leadership and Memberships

American Society for Bone and Mineral Research, 2003-present 

Orthopaedic Research Society, 2014-present

Research Interests

Bone disorders exact a considerable toll on human health in both children and adults. Dr. Long seeks to understand the fundamental mechanisms underlying both normal skeletal development and the pathophysiology of bone diseases. His current research includes studies of skeletal stem cells and progenitors, metabolic regulation of bone cells, and the integration of bone and whole-body metabolism.

Education & training

Undergraduate Degree

BS - Peking University (Cell Biology), Beijing, China.

Graduate Degree

MA - University of California, Santa Barbara (Molecular Biology), Santa Barbara, California.

Medical Degree

PhD - Tufts University (Developmental Biology), Medford, MA.

Team affiliations

View fewer all team affiliations View all all team affiliations

Publications

Publications

Lee SY and Long F. Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation. J Clin Invest. 2018 Oct; pii: 96221. doi: 10.1172/JCI96221

Shi Y, He G, Lee WC, McKenzie JA, Silva MJ and Long F. Gli 1 identifies osteogenic progenitors for bone formation and fracture repair. Nat. Comm. 2017 Dec; 8(1):2043. doi: 10.1038/s41467-017-02171-2 PMCID: PMC5725597

Esen E, Chen J, Karner CM, Okunade AL, Patterson BW, Long F. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 2013 May; 17(5):745-55. doi: 10.1016/j.cmet.2013.03.017. Epub 2013 Apr 25. PMCID: PMC3653292

Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F. Rac1 activation controls nuclear localization of b-catenin during canonical Wnt signaling. Cell. 2008 Apr; 133(2):340-53. doi: 10.1016/j.cell.2008.01.052 PMCID: PMC2390926

Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R, Long F. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med. 2008 Mar; 14(3):306-14. doi: 10.1038/nm1716. Epub 2008 Feb 24. PMCID: PMC2740725

 

Jump back to top