Neonatal Oxygen Targeting Consensus

Neonatal Oxygen Targeting Consensus

Date of Initial Publication: Sept 2020 Revision Date: Contact Author: Sarvin Ghavam Contributing Authors: John Chuo, Kathi Maschoff

Abstract

The need for consistent care practices and improvement of Retinopathy of Prematurity (ROP) and Chronic Lung Disease (CLD) was the rationale for the oxygen targeting consensus. A group of expert stakeholders identified from participating hospitals met and reviewed evidence from recent published articles including COT, BOOST II and SUPPORT as well as a Neonatal Research Network (NRN) retrospective cohort. Using a modified Delphi method with three rounds of surveys, consensus was developed for oxygen targeting that considers the gestational age and postmenstrual age in two categories, using 32 weeks PMA as the threshold. For neonates less than 32 wks PMA on supplemental oxygen, the oxygen saturation target range is 90-94%, and those on room air is >90%. For neonates at or greater than 32 wks PMA on supplemental oxygen, the oxygen saturation target range is 92-98% and those on room air is >92%. For neonates identified with CLD at 36 wk PMA on supplementation oxygen saturations of 92-98%.

Consensus Goals

Identify age categories for oxygen saturation target range Identify appropriate oxygen saturation ranges for GA categories Identify appropriate oxygen saturation ranges for infants with chronic lung disease

Background

Controversy exists around the appropriate oxygen parameters for neonates in the neonatal intensive care unit. Data from CHOP and the CNBC Neonatal Care Network suggest need for improvement of CLD and ROP rates in comparison to the VON national data. Studies have shown that lower oxygen parameters decrease the rates of ROP in premature neonates. Recent published studies including SUPPORT and BOOST II revealed that these lower oxygen targets may increase the risk for mortality in premature neonates. The COT Study did not show any changes in mortality in the lower oxygen targeted group of premature neonates. A retrospective cohort from the NRN showed no increased morbidity or mortality in the higher oxygen targeting range following publication of the previous studies. There exists little data to support the oxygen targeting ranges for neonates with chronic lung disease.

Previous Consensus Statement or Data from Division of Neonatology (if applicable) CHOP/HUP Interim Guidelines from 2011

Infants born at <30 wks gestation and /or <1250 grams at birth until they reach 36 weeks corrected age or are in room air baseline target range for oxygen saturations: 88 – 94%. At 36 weeks corrected gestational age, oxygen supplementation should be titrated to keep saturations between 92 – 95% unless baby is in room air.

Title	Author	Loual of	During out a	Deculto	Kass
litie	Author	Level of	Primary	Results	Key
CURRORT		Evidence	Outcome		Findings/Conclusions
SUPPORT	NICHD/NRN	Level II	Severe ROP	Lower target	The increase in
			(threshold,	range of	mortality is a major
			surgery,	oxygenation	concern, since a
			bevacizumab) or	(85-89%), as	lower target range of
			death before	compared	oxygen saturation is
			discharge	with a higher	increasingly being
				range (91-	advocated to prevent
				95%), did not	retinopathy of
				significantly	prematurity
				decrease the	
				composite	
				outcome of	
				severe	
				retinopathy or	
				death, but it	
				resulted in an	
				increase in	
				mortality and	
				a substantial	
				decrease in	
				severe	
				retinopathy	
				among	
				survivors.	
	LIK Australia	l evel II	Oxygen	Those in the	Targeting an oxygen
2003111	and New		Saturation and	lower-target	saturation below 90%
	Zealand		Outcomes in	(85-89%)	with the use of
	Collaborative		Preterm Infants	group for	current oximeters in
	groups		impact on death	oxygen	extremely preterm
	8.0000		or disability at 2	saturation	infants was
			vears CGA	had a reduced	associated with an
			,	rate	increased risk of
				(compared to	death
				higher-target	
				[91-95%]) of	
				retinopathy of	

Literature Review

Title	Author	Level of	Primary	Results	Кеу
		Evidence	Outcome		Findings/Conclusions
				prematurity and an increased rate necrotizing enterocolitis	
COT	Barbara Schmidt; Robin Whyte; Elizabeth Asztalos	Level II	Effects of Targeting Higher vs. Lower Arterial Oxygen Saturations on composite of death, gross motor disability, cognitive or language delay, severe hearing loss, bilateral blindness	Of the infants who were assigned to lower target range [85- 89%] 51% died or survived with disability compared to the infants assigned to higher range [91-95%] 49% had the same outcome	In extremely preterm infants, targeting lower oxygen sats compared to higher, had no significant effect on the rate of death or disability at 18months.
NeoOProM Neonatal Oxygenation Prospective Meta-analysis	LM Askie et al	Level I	Oxygen saturation targets effects on death or major disability	No difference in composite death or major disability	Increased risk of death in lower target group (RR 1.17 p=0.01) Increased risk of severe NEC in lower target group (RR 0.74 p<0.001) Decreased incidence of ROP requiring treatment in lower target group (RR 1.33 p=0.003)
Association between Policy Changes for Oxygen Saturation Alarm Settings and	Foglia et al	Level IV	Policy change and neonatal morbidity	Showed no change in ROP, increase CLD/BPD, no change in mortality	Showed no change in ROP, increase CLD/BPD, no change in mortality

Title	Author	Level of Evidence	Primary Outcome	Results	Key Findings/Conclusions
Neonatal					
Morbidity					
and Mortality					
in Infants					
Born Very					
Preterm					

Literature Summary

•

- SUPPORT and BOOST II showed increased mortality to discharge for lower oxygen parameter group
- COT did not show difference between high and low oxygen targeting group in terms of mortality or at time of discharge
 - No interim analysis
 - NRN retrospective cohort
 - No change in morbidity or mortality with implementation of high oxygen targeting

Delphi Survey Round Results (if applicable)

Three rounds of Delphi surveys, initially with the expert stakeholder group for Round 1 and entire Division of Neonatology for rounds 2 and 3. Able to narrow down to 2 categories for oxygen targeting based on PMA and then to determine oxygen targeting goals for Chronic Lung Disease.

Consensus Statement and Clinical Recommendations

- Neonates < 32+0 wk PMA
 - ON supplemental oxygen, target oxygen range of 90-94%
 - OFF supplemental oxygen, target oxygen range of > 90%
- Neonates \geq 32+0 wks PMA
 - ON supplemental oxygen, target oxygen range of 92-98%
 - OFF supplemental oxygen, target oxygen range of >92%
- Neonates with Chronic Lung Disease > 36 +0 wks PMA
 - Oxygen targeting range of 92-98%

Caveats

- For term corrected neonates, please use unit based acceptable saturations that meet critical congenital heart disease testing parameters
- For late preterm neonates please err on the side of clinical judgement for further evaluation for persistent desaturations

	< 32+0 weeks Post Menstrual Age	≥ 32+0 weeks Post Menstrual Age
On Supplemental Oxygen	90-94%	92-98%
Off Supplemental Oxygen	>90%	>92%

Neonates > 36+0 wk PMA with Chronic Lung Disease: Oxygen targeting range of 92-98%

©2024 by Children's Hospital of Philadelphia, all rights reserved. Use of this site is subject to the <u>Terms of Use</u>.

The Neonatology Consensus Statements ("Statements") are based on a consensus of medical practitioners at The Children's Hospital of Philadelphia ("CHOP") and are current at the time of publication. These Statements are intended to be a guide for practitioners and may need to be adapted for each specific patient based on the practitioner's professional judgment, consideration of any unique circumstances, the needs of each patient and their family, and/or the availability of various resources at the health care institution where the patient is located.

Accordingly, these Statements are not intended to constitute medical advice or treatment, or to create a doctor-patient relationship between/among CHOP, its physicians and the individual patients in question. CHOP does not represent or warrant that the Statements are in every respect accurate or complete, or that one or more of them apply to a particular patient or medical condition. CHOP is not responsible for any errors or omissions in the Statements, or for any outcomes a patient might experience where a clinician consulted one or more such Statements in connection with providing care for that patient.

If you use a printed version of a Statement, please ensure that you are using the most current version.

